Krasnoselskii-type algorithm for zeros of strongly monotone Lipschitz maps in classical banach spaces
نویسندگان
چکیده
Let [Formula: see text], [Formula: see text], and [Formula: see text] be a strongly monotone and Lipschitz mapping. A Krasnoselskii-type sequence is constructed and proved to converge strongly to the unique solution of [Formula: see text]. Furthermore, our technique of proo f is of independent interest.
منابع مشابه
A SYSTEM OF GENERALIZED VARIATIONAL INCLUSIONS INVOLVING G-eta-MONOTONE MAPPINGS
We introduce a new concept of general $G$-$eta$-monotone operator generalizing the general $(H,eta)$-monotone operator cite{arvar2, arvar1}, general $H-$ monotone operator cite{xiahuang} in Banach spaces, and also generalizing $G$-$eta$-monotone operator cite{zhang}, $(A, eta)$-monotone operator cite{verma2}, $A$-monotone operator cite{verma0}, $(H, eta)$-monotone operator cite{fanghuang}...
متن کاملA Hybrid Proximal Point Algorithm for Resolvent operator in Banach Spaces
Equilibrium problems have many uses in optimization theory and convex analysis and which is why different methods are presented for solving equilibrium problems in different spaces, such as Hilbert spaces and Banach spaces. The purpose of this paper is to provide a method for obtaining a solution to the equilibrium problem in Banach spaces. In fact, we consider a hybrid proximal point algorithm...
متن کاملA Proximal Point Algorithm for Finding a Common Zero of a Finite Family of Maximal Monotone Operators
In this paper, we consider a proximal point algorithm for finding a common zero of a finite family of maximal monotone operators in real Hilbert spaces. Also, we give a necessary and sufficient condition for the common zero set of finite operators to be nonempty, and by showing that in this case, this iterative sequence converges strongly to the metric projection of some point onto the set of c...
متن کاملA Proximal Point Algorithm for Solving the General Variational Inclusions with M(·, ·)-monotone Operators in Banach Spaces
In this paper, a new monotonicity, M(·, ·)-monotonicity,is introduced in Banach spaces, and the resolvent operator of an M(·, ·)monotone operator is proved to be single valued and Lipschitz continuous. By using the resolvent operator technique associated with M(·, ·)monotone operators, we construct a proximal point algorithm for solving a class of variational inclusions. And we prove the conver...
متن کاملConstructive techniques for zeros of monotone mappings in certain Banach spaces
Let E be a 2-uniformly convex real Banach space with uniformly Gâteaux differentiable norm, and [Formula: see text] its dual space. Let [Formula: see text] be a bounded strongly monotone mapping such that [Formula: see text] For given [Formula: see text] let [Formula: see text] be generated by the algorithm: [Formula: see text]where J is the normalized duality mapping from E into [Formula: see ...
متن کامل